If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2-396x+720=0
a = 36; b = -396; c = +720;
Δ = b2-4ac
Δ = -3962-4·36·720
Δ = 53136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{53136}=\sqrt{1296*41}=\sqrt{1296}*\sqrt{41}=36\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-396)-36\sqrt{41}}{2*36}=\frac{396-36\sqrt{41}}{72} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-396)+36\sqrt{41}}{2*36}=\frac{396+36\sqrt{41}}{72} $
| 12+3+4x=-2x+3x-3 | | 3x-2/8=x+5/4 | | 3+2(3-2y)=8 | | 30=-10m | | x+5+2x+19=4x+7 | | (5x-33)=3x+17 | | -5(x-6)-(-4x+2)=4(-6+1)-3(-8x-3) | | 8-10x=-6x+2 | | -x^2+525x-12500=0 | | -2t+5=-9 | | -3/7a=-6 | | X2-8x+12=0 | | 3(x+3)-2x=2x+7+1 | | n/29=-9/29 | | 2(x+2)+4(x+6)=2x+8 | | 9/x+3=3/5 | | -5+5y=25 | | 2/4m+1/8m-6=15 | | (z+5)=(4z-4)=(3z-1) | | 22=8+2w | | -12+4x=6(x-4) | | d/10=4 | | Y-2y+3=-y | | w/9=1 | | 1x-7=3x | | 4=22-b | | 3^n=3/3^3 | | -12+x=6(x-4) | | 14-3(5t—12)=1-(20t+1) | | 2(x/4)=24 | | -2k=-k-9 | | 2x-4+1=5 |